
11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 1 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

Chapter 3 -- SASM

ABOUT SASM

MOTIVATION for SASM:
 hiding the details of Pentium asm. lang. (on purpose!)
 SASM code will look more like HLL code -- to make student's transition
 easier.
 Introducing one more level of abstraction in order to postpone
 discussion of several topics.

 HLL SASM assembly machine code

 each HLL statement maps into 1 or MORE SASM instructions
 each SASM instruction maps into 1 or MORE Pentium instructions

SASM -- the language

A subset of the functionality of most high level languages --
 no records/structures
 no formal arrays
 no procedures/functions

What is required by a programming language?
 declarations
 arithmetic operations
 conditional execution (if then else)
 looping control structures
 communication w/user. . .(write statement)

About SASM:
 -- one instruction, declaration per line
 -- comments are anything on a line following `;'
 (comments may not span lines)
 -- given the Intel architecture and its history, there are an enormous
 number of RESERVED WORDS. Consult APPENDIX A always!

DECLARATIONS

 - they give information about how much memory space is needed
 - they assign a name to the memory space

 SASM has 3 basic types: integer, float (real), character
 can build other types out of these,
 for example, boolean is really an integer with only 2 defined values.

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 2 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 Pascal:
 var variablename: type;

 C or C++:
 type variablename;

 SASM:
 variablename type value

 type is dd if integer
 db if character
 dd if floating point

 value is required -- it gives the variable an initial value
 -- to explicitly leave value undefined, use
 the '?' character

 examples:
 bool_flag dd 0

 counter dd 0

 variable3 dd ?

 constant_e dd 2.71828

 uservalue db ?

 letter_a db 'a'

 string1 db 'This is a string.', 0
 ; null terminated string example, VERY USEFUL!

 string2 db 'Another string', 0ah, 0
 ; that 0ah is the newline character, AND this string is
 ; null terminated.

remember:
 -- one declaration per line.

DIRECTIVES

 a way to give information to the assembler.

 - some directives start with `.' (period)

 examples:

 dd # tells the assember to allocate 32 bits
 db # tells the assember to allocate 8 bits

 .data # identifies the start of the declaration section
 # there can be more than 1 .data section in
 # a program

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 3 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 .code # identifies where instructions are
 # there can be more than 1 .code section in
 # a program

 .stack # You get this set of memory, called a stack.
 # Don't worry about it for now, just use it.

 .model # Gives the assembler information about how to
 # place stuff in memory, and how to call stuff
 # outside the program (like library calls)

ARITHMETIC instructions

 SASM Pascal C or C++ NOTES

 move x, y x := y; x = y; x and y are ints or floats
 moveb x, y x := y; x = y; x and y are chars
 movezx x, y NO EQUIV NO EQUIV x is int, y is char (SIZE)
 movesx x, y x := y; x = y; x is int, y is char (SIZE)
 ineg x x := -x; x = -x;
 iadd x, y x := x + y; x = x + y; integer addition
 isub x, y x := x - y; x = x - y; integer subtraction
 imult x, y x := x * y; x = x * y; integer multiplication
 idivi x, y x := x div y; x = x / y; integer division (quotient)
 irem x, y x := x mod y; x = x % y; integer division (remainder)
 fpadd x, y x := x + y; x = x + y; floating point addition
 fpsub x, y x := x - y; x = x - y; floating point subtraction
 fpmul x, y x := x * y; x = x * y; floating point multiplication
 fpdiv x, y x := x / y; x = x / y; floating point division

 NOTES: 2. cannot increase the number of operands.
 3. y can be an IMMEDIATE for all except the floating point
 instructions

 examples:

 move count, 0

 imult product, multiplier

 iadd sum, 1

NOTE: there are other instructions that implement boolean functions,
 but we don't cover them yet.

The move instructions must be carefully chosen to match the type
of the data being moved. The operation and difference between
movezx and movesx will be covered after we talk about representations.

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 4 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

CONDITIONAL EXECUTION

 sometimes an instruction (or a set of instructions) should
 be executed, and sometimes it (they) shouldn't.

 HLL -- simplest form is a go-to. (Always discouraged.)

Pascal if-then-else (a conditional go-to!)

 if (condition) then
 statement
 else
 statement;

C if-then-else

 if (condition)
 statement;
 else
 statement;

SASM 'ifs' and 'gotos'
(a better name is CONTROL INSTRUCTIONS)

 SASM effect of instruction

 br label goto label;
 blz label if SF=1 then goto label;
 bgz label if SF=0 and ZF=0 then goto label;
 blez label if SF=1 or ZF=1 then goto label;
 bgez label if SF=0 or ZF=1 then goto label;
 bez label if ZF=1 then goto label;
 bnz label if ZF=0 then goto label;
 compare x, y result of x-y sets condition codes
 compareb x, y result of x-y sets condition codes

This is different than many other modern machines. There are
two CONDITION CODES that we must think about.

 condition code contents

 zero flag (ZF) ZF=1 if result is 0
 sign flag (SF) SF=1 if result is negative
 SF=0 if result is zero or positive

These condition codes get changed (set) according to the result of certain
instructions (iadd, isub, ineg, and some logical instructions).
The condition codes are used by the control instructions.

To explicitly set the condition codes, use a compare instruction.

EXAMPLE:

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 5 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 Pascal if-then-else:

 if (count < 0) then
 begin
 count := count + 1;
 end;

 C equivalent:

 if (count < 0)
 count = count + 1;

SASM equiv to if-then-else:

 compare count, 0
 blz ifstuff
 br end_if
 ifstuff: iadd count, 1
 end_if: # next program instruction goes here

 -- OR --

 compare count, 0
 bgez end_if
 iadd count, 1
 end_if: # next program instruction goes here

 WHICH ONE OF THESE IS BETTER?

NOTE: Be careful not to use RESERVED WORDS for your variable names
 or label names.
 (some reserved words: end endif if else elseif for while repeat)

Structured loops can be built out of IF's and GOTO's
 (test and branch)

EXAMPLES:

while loop example

 Pascal:

 while (count > 0) do
 begin
 a := a mod count;
 count := count - 1;
 end;

 BAD STYLE Pascal:

 while: if (count <= 0) then goto endwhile;
 a := a mod count;
 count := count - 1;
 goto while;

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 6 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 endwhile:

 C or C++:

 while (count > 0) {
 a = a % count;
 count --;
 }

 SASM:

 while_loop:
 compare count, 0
 blez end_while
 irem a, count
 isub count, 1
 br while_loop
 end_while: # next program instruction goes here

while loop example (compound conditional)
--
 Pascal:

 while (count < limit) and (c = d) do
 begin
 /* loop's code goes here */
 end;

 C or C++:

 while ((count < limit) && (c==d))
 {
 /* loop's code goes here */
 }
 SASM:

 while_loop:
 compare count, limit
 bgez end_while
 compare c, d
 bnz end_while

 # loop's code goes here

 br while_loop
 end_while:

for loop example

 Pascal:

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 7 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 for i:= 3 to 8 do
 begin
 a := a + i;
 end;

 C:

 for (i = 3; i <= 8; i++)
 {
 a = a + i;
 }

 SASM:

 move i, 3
 for_loop:
 compare i, 8
 bgz end_for
 iadd a, i
 iadd i, 1
 br for_loop
 end_for:

COMMUNICATION WITH THE USER (I/O operations)
--
 SASM effect of instruction

 get_ch x read character from input, place into x
 put_ch x send character in x to output
 put_i x send integer in x to output
 put_fp x send floating point value in x to output
 put_str x send (NULL TERMINATED) string at x to output

SASM doesn't have any oddities about
testing for eoln or eof. The newline character (0ah, or '\n' in C)
is just another character to be read or written.

NOTE: There are times when you will want to 'get' something that
isn't a character (like an integer or floating point value input
by user). In SASM, you can't, since the instruction doesn't exist.
At the end of Chapter 5, you will know enough about data representation
to be able to read an integer (or floating point value) character
by character and translate it to an integer.

It is done this way because input from a keyboard are only characters.
Output to a simple display (which we are assuming) are only characters.
The C library (that we utilize) gives easy implementation of
output for other types, so you get that benefit in this language.

EXAMPLES:

 ; this is a code FRAGMENT, not a whole program
 .data
 msg1 db 'The integer is ', 0

11/02/22 11:30Lecture notes - Chapter 3 - SASM

Página 8 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/SASM.html

 int1 dd 285
 newline db 0ah
 msg2 db 'The second string.', 0ah, 0

 .code
 put_str msg1
 put_i int1
 put_ch newline
 put_str msg2

 prints:

 The integer is 285
 The second string.

